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Abstract
Correlation-based real-time stereo systems have

been proven to be effective in applications such as
robot navigation, elevation map building etc. This pa-
per provides an in-depth analysis of the major error
sources for such a real-time stereo system in the con-
text of the cross-country navigation of an autonomous
vehicle. Three major types of errors: foreshortening
error, misalignment error and systematic error, are
identified. The combined disparity errors can easily
exceed three-tenth’s of a pixel, which translates to a
significant amount of range errors. Upon understand-
ing these error sources, we demonstrate diflerent  ap-
proaches to either correct them or model their magni-
tudes without excessive additional computations. By
correcting those errors, we show that the precision of
the stereo algorithm can be improved by 50%.

1 Introduction
Unmanned ground vehicles (UGV) have been un-

der development for various missions ranging from in-
terplanetary exploration, volcanic exploration to haz-
ardous waste disposal. One critical sensing capability
of such vehicles is to avoid obstacle for autonomous or
semi-autonomous navigation, During the past decade,
real-time stereo systems have emerged as the major al-
ternative to achieve such a task other than the laser
range finder, which is dit%cult to use in many missions
for various reasons. Two main requirements for such
a stereo system are its speed and precision. It must
be fast enough to guide the vehicle in real-time, and
precise enough to detect any far-away obstacle so that
the vehicle has enough time to steer around it. The
correlation-based stereo method [3, 4] can be as fast
as several pairs per second, and it delivers reasonably
precise results.

With the current state-of-art system as described in
the next section, we believe that, in order to achieve
even higher percentage of correct obstacle detections
in the context of autonomous navigation, we need
a better understanding of the errors in stereo than

Larry Matthies

Jet Propulsion Laboratory
Pasadena, CA 91109

regarding them uniformly as consequences of image
noises, and to correct those errors if possible with-
out excessive additional computations. This paper
presents our analysis of three major error sources in
such correlation-based real-time stereo systems. All
these three types of error are significant in magnitude
and yet none of them is caused by image noise.

The foreshortening errors result from the fact that
the 3D scene is not fronto-parallel.  Therefore, for any
small  patch in the left image, its corresponding patch
in the right image is not only translated but also dis-
torted. The correlation-based stereo method models
the translation but not the distortion. To measure
the distortion effects on disparity values, we compute
a ‘Foreshortening sensitivity map”, which represents
how sensitive the disparity value at any pixel is with
respect to the magnitude of the foreshortening. Such
a measure is very useful in determining the reliabil-
ity of disparity values. In order to correct the errors
caused by the foreshortening effects without changing
the stereo algorithm, we can pre-warp  the right image
such that the foreshortening is zero for an arbitrary
3D plane instead of the fronto-parallel  planes. For the
task of vehicle navigation, we can set such a plane to
be the ideal ground plane. In practice, such a sim-
ple method usually results in an 80% reduction of the
foreshortening errors.

Precise stereo calibration has been extensively re-
searched during the past decade [2]. The problem with
the outdoor and cross-country navigation is that ex-
tensive mechanical vibrations and rough terrain can
often perturb camera parameters, therefore, render
the pre-calibrated  stereo  rig either partially or even
completely out of calibration. The second major error
source is the misalignment errors caused by stereo jig
being slightly out of calibration. We will not explore
the self-calibration approach since self-calibration for
lens with significant distortion is beyond the scope of
this paper. Instead, we first try to model the effects
of misalignment by computing a “misalignment sensi-
tivity map”, which measures the sensitivity of the dis-
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parity values with respect to the misalignment. Such
a measure is also very useful in determining the relia-

‘ b bility  of disparity values. In order to correct the mis-
alignment errors, we model the misalignment field by
a low-order bivariate polynomial, and then pre-shift
the right image vertically in the opposite direction.
We show that such a simple approach usually results
in 50% reduction of misalignment errors.

The third error source for the correlation-based
stereo is the systematic error which is the consequence
of window effects and quadratic approximation in the
subpixel  registration. For typical images used in cross-
country navigation, the magnitude of the systematic
error is between 0.05 and 0,10 pixels. We test a quar-
tic fitting algorithm to replace the quadratic interpo-
lation. The quartic approach appears to reduce the
systematic errors by about 0.03 pixels. Without dras-
tic change to the simple correlation algorithm and the
amount of computation, we believe the systematic er-
ror together with errors from image noises represents
the upper limit of the precision that the real-time
stereo system can achieve. We also outline several
approaches to alleviate the systematic errors if a sig-
nificant amount of additional computation is feasible.

2 Background
Figure 1 shows the block diagram of a real-time

stereo system for obstacle detection. The image rec-
tification process utilizes the stereo calibration infor-
mation to correct radial lens distortion and align two
images along scanlines.  Image pyramids for both left
and right images are built. The integer disparity val-
ues are computed by search along the scanlines  using
a 7 x 7 window. The objective function is the Sum-of-
Squared-Difference (SSD):

3 3

M(d)  =  ~ ~ (l/(x)y)  –  L.(Z–– d,y))z  ,  ( 1 )
x=-3y=-3

where 11 is the left image, and I. is the right image.
The SSD values are evaluated discretely along scan-

lines of the right image, and the integer disparity val-
ues are where the SSD values are the smallest. Once
the smallest SSD value SO is identified, the two ad-
jacent SSD values S-1 and S+l on the left and right
side of So are used together with So to approximate
the SSD curve by a second-order polynomial. The
subpixel adjustment on the integer disparity value is
the minimum of the quadratic curve:

A d =
s-l – S+l

2(s_l + S+l – 2s0) d
(2)

To achieve robustness, we also employ many addi-
tional techniques such as smoothing, statistical out-

Iier detection, blob filtering, consistency checking and
other heuristic methods. Since most of these ad hoc
techniques are irrelevant to this paper, we will not
specify the details of these technique. Interested read-
ers may refer to [3, 4].

In the latest demo in Fort Hood of the stereo-guided
navigation, the vehicle successfully traversed 2 kilo-
meters autonomously. Despite the success, we believe
that the system needs to be more reliable in detecting
even smaller obstacles. And one of the major options
to achieve that goal is to improve the precision of the
range image from the stereo system without excessive
additional computations. Given the current configura-
tion of the stereo system, a disparity error of 0.1 pixels
results in a range error of 14 centimeters at 10 meters.
And we need to detect obstacles of 41 centimeters high
(i.e. the axle clearance of the HMMWV) at that dis-
tance. The three major error sources presented in this
paper usually generate a combined error in a magni-
tude of around 0.3 pixels, which is substantial for the
obstacle detection purpose. In the next three sections,
we will look into each of the three major error sources
in the real-time stereo system, and propose various
approaches to either correct or model them.

3 Foreshortening Error
The foreshortening error results from image defor-

mations unmodelled  in the original SSD formulation
in Eq. 1. When the right image 1~ is not only trans-
lated but also deformed with respect to the left image
IJ, minimizing the SSD function M(d)  will not yield
the correct disparity. Such a deformation is caused
by non-zero disparity gradients, which, for rectified
stereo pairs, is caused by the 3D surface not being
fronto-parallel.  Depending on the image texture and
the amount of deformation, the estimated disparity
d will contain errors of various magnitudes. In the
UGV navigation task, since the surface of the terrain is
rarely frontc-parallel  to the camera pointing direction,
there is always a similar deformation. In this section,
we will first model quantitatively the foreshortening
errors for terrain imagery, then reduce those errors by
pre-warping the right image so that the equi-disparity
plane coincides with the ideal ground plane. Similar
pre-warp  method was also proposed in [5, 1].

In the SSD minimization in Eq. 1, if the disparity
values have significant gradient in the column (verti-
cal) direction, which is usually true for stereo images
shot from the top of a vehicle, the deformation be-
tween the left and right image can be modeled as:

I,(z, v) = lf(z+do+a~,  y), (3)

where a is the non-zero disparity gradient in the col-
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Figure 1: Main Blocks of a Real-Time Stereo System for Obstacle Avoidance

umn direction.
Taking the Taylor expansion of the above equation,

we have

Replacing it into Eq. 1 and simplifying, we then have

3 2

Af(d) N 5X(( )
d–do–ay)~ , (5)

r=-3y=-3

the minimum of which is

J=dO+aef, (6)

where the foreshortening sensitivity ej is defined as:

e, = E:=-3D;=-3W)2

Z:=-3X;=-3  ($+)2 “

(7)

The foreshortening sensitivity ef measures at ev-
ery pixel location the ratio between the magnitude
of disparity error and the magnitude of the disparity
gradient which causes the error. We call the image
of these sensitivity values “Foreshortening Sensitivity
Map”. And it can be computed very efilciently.

Figure 2 shows a typical image of a nearly flat ter-
rain. Figure 3 shows the foreshortening sensitivity
map of the terrain image. The sensitivity values are
quantized uniformly bet ween [-3, 3]. Based on the
stereo jig configuration and the image resolution at
240 x 256, the magnitude of vertical foreshortening of
the rectified stereo images is always around 1/8, i.e.,
the disparity increases from about O to 30 pixels in 240
rows. Figure 4 shows the image resulting from hori-
zontally shifting the image in Figure 2 by an increasing
disparity from top to bottom. The corresponding true
disparity map has a vertical gradient of 1/8. We then
feed this synthetic stereo pair to the real-time stereo
system to measure the disparity errors caused by this
foreshortening.

Figure 5 shows the errors caused by the foreshort-
ening at every pixel and its correlation with the fore-
shortening sensitivity values. The line in the corre-
lation plot is the ideal linear relation predicted in

Figure 2: A Terrain Image

Figure 3: Foreshortening Sensitivity Map

Eq. 6. The errors are quantized uniformly between
[–3/8, 3/8]. We conclude that the foreshortening sen-
sitivity map formulated in Eq. 7 is an accurate model
of sensitivity to disparity gradient at every pixel.

We also measure the statistics of the all the sensi-
tivity values in order to have an idea about the average
magnitude of the errors caused by the foreshortening.
Figure 6 shows the histogram of the foreshortening
sensitivity map. The mean is about zero, and the

Figure 4: Synthetically Warped Image
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Errors Correlation
Figure 7: Right Image of the Same Terrain

Figure5: Errors caused by Foreshortening and Corre-
lation  with Foreshortening SensitivityValues
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Distribution of Foreshortening Sensitivity

standard deviation is 0.71. If the expected disparity
gradient is around 1/8, these statistical measures pre-
dict that the foreshortening error has a zero mean, and
a standard deviation of about 0.09 pixel.

Given such a substantial magnitude of the average
errors caused by foreshortening, we attempt to correct
them. Instead of having fronto-parallel  planes be equi-
disparity, we can pre-warp the image such that the
ideal ground plane is equi-disparity  as we did in Fig-
ure 5. Figure 7 is the real right image taken together
with the left image in Figure 2. Figure 8 shows side-
by-side the disparity maps resulting from the original
stereo algorithm and the pre-warp  method. Note that
the disparity gradient in both maps has been factored
out, and the disparity maps are quantized uniformly
between [1, 4] pixels. Though we do not have ground
truth to quantify how much improvement the prewarp
method has introduced, the reduction of small ripples
in the disparity maps is obvious. The residual dispar-
ity gradient is about 0.01 to 0.02 in both the vertical
and horizontal directions. Such a reduction of the dis-
parity gradient results in more than 80% of reduction
in the foreshortening and consequent foreshortening
errors.

As a summary, we showed in this section that the
foreshortening causes significant errors, and the fore-
shortening sensitivity map accurately models how sen-

Original algorithm Foreshortening Correction

Figure 8: Disparity Maps

sitive  a disparity value at a particular location is with
respect to the foreshortening. For the vehicle naviga-
tion purpose, we can use the pre-warp method in order
to minimize the foreshortening in stereo images. The
results show 8070 improvements in precision.

4 Misalignment Error
When there is a certain amount of misalignment af-

ter the rectification, it will introduce additional errors.
In practice, calibrating a stereo jig so that the mis-
alignment is less than a tenth of a pixel is challenging.
Even if it can be calibrated to such a high precision,
it can rarely survive the severe vibrations of the ve-
hicle and the rough terrain without being slightly out
of calibration. In this section, we will look into this
misalignment problem and try to mode] and correct
the disparity errors caused by misalignment.

In the SSD minimization in Eq. 1, if there exists
a small vertical misalignment m, the relation between
the left and right images can be modeled locally as:

where, again, dd is the true disparity value.
Taking the Taylor expansion of the above equation,

we have



Figure 9: Misalignment Sensitivity Map Errors Correlation

Replacing it into Eq. 1, we have

3 3

)
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M(ri)= ~ ~ ((d–do)g–?llg , (lo)
r=-3y=-3

the minimumof which is

d = do + me,,,, (11)

where themisalignmen  tsensitivi tyva]ueenl  isclefined
as:

_ X=-3 E;=-3 %+%
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(12)

The misalignment sensitivity em measures at every
pixel the ratio between the magnitude of the disparity
error and the magnitude of the misalignment which
causes the error. We call the image of these sensitivity
values ‘(Misalignment Sensitivity Map”, which again
can be computed very efficiently.

For the left image shown in Figure 2, its misalign-
ment sensitivity map is shown in Figure 9. The sen-
sitivity values are quantized uniformly in [-3, 3]. We
synthetically shifted the same image vertically by 1/5
pixel, and feed the pair to the real-time stereo system
to generate the disparity map. Figure 10 shows the
disparity error caused by the misalignment and the
correlation between the errors and the misalignment
sensitivity values. The line in the correlation plot is
the ideal linear relation predicted in Eq. 11. The er-
rors are quantized uniformly in [-3/5, 3/5]. Overall,
the misalignment sensitivity map predicts fairly accu-
rately the disparity errors caused by the misalignment.

Figure 11 shows the histogram of the misalignment
sensitivity map. The mean value is zero, and the stan-
dard deviation is 0.51 pixel. Therefore, for a misalign-
ment ranging from 0.1 to 0.2 pixel, the average error
caused by the misalignment for road imagery ranges
approximately from 0.05 to 0.10 pixel.

‘ The errors also include the systematic errors presented in
the next section, which may explain the differences between
what is predicted by the misalignment sensitivity map and the
actual disparity errors.

Figure 10: Disparity Errors Caused by Misalignment
and Correlation with Sensitivity Values

Figure 11: Distribution of Misalignment Sensitivity
Values

Since the errors caused by misalignment are signif-
icant, it is desirable to minimize the magnitude of the
misalignment. The traditional way to achieve this goal
is to calibrate the stereo jig more precisely. Unfortu-
nately, for reasons cited before, achieving even higher
precision in calibration is both difficult and ineffec-
tive. Self-calibration may be the only option when
the stereo calibration is completely out of calibration,
i.e. the magnitude of the misalignment is more than a
pixel. But for most cases, the magnitude is well within
half a pixel. Therefore, we can directly correct the
misalignment in images instead of indirectly compen-
sating it through modifying the camera parameters.

Before we adopt the approach to directly correct
misalignment in images, we need to experimentally
verify that the misalignment field is consistent, i.e., it
does not change from one frame to next. If it is ap
proximately constant, we then only need to calibrate
the misalignment field occasionally to keep our mode]
up-t~date.  Otherwise, calibrating the misalignment
field for every stereo pair will be too much computa-
tion, and further analysis is needed to determine the
cause of the dynamic misalignment.

In order to calibrate the misalignment field, we aug-
mented the original SSD search in Eq, 1 to include a
vertical search in the misalignment calibration mode.
In fact, the vertical search only needs to be +1 pixel.



Figure 12: Misalignment Fields

In the subpixel registration in Eq. 2, we fit a bivari-
ate quadratic equation to a nine-point neighborhood
to compute the subpixel shift in both the horizontal
and vertical directions. Note that in the experiments
shown in this section, we have already applied the
foreshortening correction technique presented in the
previous section. Figure 12 shows the misalignment
fields for the stereo pair (Figure 2 and Figure 7) and
another stereo pair shot in the same trip. It shows
that the misalignment fields are fairly consistent. For
both pairs, we have significant misalignments on the
left side of the image. The maximal misalignments in
lower-left and upper-left corners are roughly +0.4  pix-
els respectively. And the overall standard deviation of
the vertical shift is 0.15 pixels2.

Given that the misalignment fields are consistent,
we can model them by a bivariate polynomial. In prac-
tice, we find that a 4th order bivariate polynomial can
model the misalignment fields very well:

ao + al~ + az~+ asxz  + ~4xY+ asvz + &jx3+

a7x2y + asxy2 + a9y3  + a10z4 + all Z3y+

alzxzyz  + alsx~ + a14y4.

The modelling  of the misalignment field by using a
2D SSD search and fitting a bivariate polynomial is
computationally expensive. But we do not need to do
it for every pair. And it is much easier and faster than
a full calibration.

After the misalignment field is modeled, we then
pre-warp the stereo pair such that the misalignment
is canceled. The warp is simply a vertical shift. Fig-
ure 13 shows the disparity map for the same stereo
pair we used in the previous section. We compensated
the misalignment. And the improvement in the lower-
left area is very obvious since the misalignment was
large in that area. In fact, Figure 14 shows the mis-
alignment field after we have compensated for the mis-
alignment. Statistically, the standard deviation of the

2Again, it also includes the systematic error.

Figure 13: Disparity Map after Misalignment Com-
pensation

Figure 14: Misalignment Field after Misalignment
Compensation

misalignment in Figure 14 is 0.10 pixel for the whole
image. Given that the systematic error is at least 0.05
pixel, we conclude that the misalignment compensa-
tion method reduces the amount of misalignment by
at leaat 50Y0.

5 Systematic Error
The third type of error source in the real-time

stereo system is what we called the “systematic er-
rors”, which are caused by the implicit assumptions
in the algorithm. There are two kind of systematic
errors, which are significant:

● Window Effect  Errors: When the window mask
slides on the right image, every time we move the

●

window to the right by one pixel, the leftmost
column is moved out and the rightmost column
is moved in. With a finite window, the differ-
ence in image content by replacing the leftmost
column by the new rightmost column is random.
Therefore, there is certain amount of randomness
in the SSD values. When the SSD values are in-
terpolated, such a randomness causes errors in
disparity.

Linearization Errors: The implicit assumption in
the quadratic interpolation is that the right image
can be linearized using Taylor expansion around
the true disparity. Unfortunately such an approx-
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imation is poor when there is a significant amount
of high frequency information.

?

Since the window effect errors are caused by the dis-
crepancy between the leftmost column which is moved
out and the rightmost column which is moved in, we
have the following two observations:

1. The errors have zero-mean because the discrep-
ancy should have a zero-mean distribution.

2. When the image is composed of information only
at the harmonic frequencies of the window width,
the window effect errors should be zero. In other
words, if the frequency of the information is al-
ways an integer times the inverse of the window
width, the moved-out leftmost column is exactly
the same as the moved-in rightmost column.

Let us suppose that an image is composed of one
single sinusoid at frequency .f which is an integer times
the inverse of the window width, and the true disparity
is d. Therefore, using the Parsavel’s  theorem, we have
SSD values at z = –1,0, 1 as

S.1 = [I ~-j~ _ ~~fd 112, (13)

so = II 1 – e~~d 112, (14)

S1 = II e~~ - e~fd 112, (15)

where the magnitude of the sinusoid is omitted since
it is the same for all three SSD values. In this case,
the only systematic error is the linearization error.

After fitting a parabola to the three SSD values
above, the estimated disparity ~ in Eq. 2 is:

. tan(fd)
d  =  2  tan(~/2) ‘

(16)

Figure 15 sh~ws the true disparity d versus the es-
timation bias d - d. The different curves are for dif-
ferent frequency f = +2.0,+1 .5, A1.0, +0.5,  with the
outmost corresponding to f = A2.0, and the flattest
corresponding to $ = &O.5.

Of course, an image contains information at fre-
quencies ranging from –n to rr. But the different bi-
ases generated by information at different frequencies
do not cancel each other since they all bias toward
the same direction. As a result, the linearization error
is in fact a bias toward integer disparity values. The
more high frequency information the image contains,
the larger the magnitude of the bias is.

We test the real-time stereo system on stereo pairs
with uniform disparity and zero misalignment, i.e.
both the foreshortening and misalignment errors are

Figure 15: Bias for different Frequency
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Figure 16: Systematic Bias from the Experiments

zero. We translate the whole terrain image horizon-
tally by the following amount: –3/8, -1/4, –1/8, O,
1/8, 1/4, 3/8, 1/2 pixel. For every pair, we run the
real-time stereo system on it, and compute the statis-
tical distribution of the disparity values. The second
set of experiments is the same as the first one except
that we also add in the right image a white noise whose
standard deviation is 3.0 out of 256 greylevels.

Figure 16 shows the disparity bias versus true dis-
parity for the two sets of the experiments. And Fig-
ure 17 shows the standard RMS errors, i.e. the zero-
mean errors, for the same sets of experiments. The
solid curves are from the first set, and the dashed
curves from the second set.

From these synthetic examples, we draw the follow-
ing conclusions:

1. The linearization error is a bias modeled by
Eq. 16. The maximal bias for terrain imagery

Figure 17: RMS Errors from the Experiments
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Figure 18: Bias using Quartic Curve Fitting

is about 0.04 to 0.05 pixel, and is reached around
*1/4 from an integer disparity value.

The window effect error is zero-mean with its
standard deviation for terrain imagery about 0.05
pixel.

The effect of image noises is relatively insignif-
icant. The RMS errors show only a very small
amount of increase when image noises are present.

One way to reduce the linearization errors is to
extend the Taylor expansion to quadratic terms. In
other words, the SSD curve M(d) should be approxi-
mated aa a quartic instead of a quadratic curve. We
represent the quartic curve as

Q(z) = Co+ cl~ + C2Z2 + C3Z3 + CAX4. (17)

In order to fit the SSD values against the quartic curve,
we need five SSD sample values: S_z, S_ 1, So, S1, and
S2. The minimum of the quartic curve is one root of
its derivative function. Since we already have a good
subpixel solution from the original quadratic approx-
imation, we can use it as an initial estimate of the
minimum. Usually the minimum is reached in a cou-
ple of iterations using the Newton-Raphson method.

Figure 18 and Figure 19 show the bias and RMS er-
rors for the same stereo pair by using the quartic curve
fitting. We can see that the quartic curve method re-
duces both the linearization error (bias) and window
effect errors (RMS) by about 0.03 pixels.

There are a number of other approaches which can
reduce the systematic errors significantly, though they
usually require a significant amount of additional com-
putations:

● Sub-pixel Sampling The magnitude of the bias is
proportional to the sampling distance in the SSD
function. If we can sample the SSD values by
half-pixel distance instead of one pixel distance,
the magnitude of the bias can be cut by half.

b

6

Larger Window: Since the window effect errors
are the direct consequence of the discrepancy
of the moved-out leftmost column and moved-in
rightmost column, increasing the window size will
decrease the effects of the discrepancy simply be-
cause there are more columns.

Summary
In this paper;  we have analytically identified the

three major sources of disparity errors in a real-time
stereo system. For each error sources, we first quantify
its magnitude for a typical terrain image pair and cre-
ate a mathematical model. Based on the models of the
error sources, we propose various simple and effective
approaches to reduce their magnitudes without exces-
sive additional computations. By applying the tech-
niques presented in this paper, we demonstrated that
the combined disparity errors can be reduced from
about 0.3 pixels to 0.10 to 0.15 pixels.
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